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Abstract

Context: Recent whole genome mRNA expression profiling studies revealed that bladder
cancers can be grouped into molecular subtypes, some of which share clinical properties
and gene expression patterns with the intrinsic subtypes of breast cancer and the
molecular subtypes found in other solid tumors. The molecular subtypes in other solid
tumors are enriched with specific mutations and copy number aberrations that are thought
to underlie their distinct progression patterns, and biological and clinical properties.
Objective: The availability of comprehensive genomic data from The Cancer Genome
Atlas (TCGA) and other large projects made it possible to correlate the presence of DNA
alterations with tumor molecular subtype membership. Our overall goal was to deter-
mine whether specific DNA mutations and/or copy number variations are enriched in
specific molecular subtypes.
Evidence: [1_TD$DIFF]We used the complete TCGA RNA-seq dataset and three different published
classifiers developed by our groups to assign TCGA’s bladder cancers to molecular
subtypes, and examined the prevalence of the most common DNA alterations within
them. We interpreted the results against the background of what was known from the
published literature about the prevalence of these alterations in nonmuscle-invasive
and muscle-invasive bladder cancers.
Evidence synthesis: The results confirmed that alterations involving RB1 and NFE2L2
were enriched in basal cancers, whereas alterations involving FGFR3 and KDM6A were
enriched in luminal tumors.
Conclusions: The results further reinforce the conclusion that the molecular subtypes of
bladder cancer are distinct disease entities with specific genetic alterations.
Patient summary: Our observation showed that some of subtype-enriched mutations
and copy number [6_TD$DIFF]aberrations are clinically actionable, which has direct implications for
the clinical management of patients with bladder cancer.
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1. Introduction

Recent whole genome mRNA expression profiling studies

revealed that bladder cancers can be grouped into molecu-

lar subtypes, some of which share clinical properties and

gene expression patterns with the intrinsic subtypes of

breast cancer and the molecular subtypes found in other

solid tumors. The molecular subtypes in other solid tumors

are enriched with specific mutations and copy number

aberrations (CNAs) that are thought to underlie their

distinct progression patterns, and biological and clinical

properties.

2. Evidence acquisition

We used the complete The Cancer Genome Atlas (TCGA)

RNA-seq dataset and three different published classifiers

developed by our groups to assign TCGA’s bladder cancers

to molecular subtypes, and examined the prevalence of the

most common DNA alterations within them (Supplemen-

tary material). We interpreted the results against the

background of what was known from the published

literature about the prevalence of these alterations in

nonmuscle-invasive and muscle-invasive bladder cancers.

3. Evidence synthesis

3.1. Clinical issues in bladder cancer

Clinical experience and emerging genomic data support the

idea that bladder cancers progress along two largely

nonoverlapping tracks (‘‘papillary’’ and ‘‘nonpapillary’’)

that pose distinct challenges for clinical management [1–

3]. Most nonmuscle-invasive bladder cancers (NMIBCs)

belong to the papillary pathway and are characterized by

the presence of activating type-3 receptor for fibroblast

growth factor (FGFR3) mutations, downstream Ras pathway

activation, wild-type TP53, and stable genomes [1–3]. Clini-

cally, papillary NMIBCs are rarely lethal but recur almost

always, necessitating that patients receive lifelong surveil-

lance; the repeated surgical procedures required to deal

with recurrences cause significant anxiety, discomfort, and

morbidity, making bladder cancer the most expensive

tumor on a per patient basis. A significant proportion of

cases (15–20%) of NMIBCs progress to become muscle

invasive [1,2]. However, currently no reliable tools are

available to identify them before they become life

threatening. The nonpapillary pathway is characterized

by loss-of-function mutations and CNAs involvingTP53 and

RB1 and genomic instability [1,2]. It gives rise to aggressive,

muscle-invasive bladder cancers (MIBCs), representing

approximately 20–25% of all bladder cancers and causing

death in approximately half of affected patients. Carcinoma

in situ (CIS) is generally considered to be the precursor

lesion for nonpapillary MIBCs [1,2], but comprehensive

genomic data for CIS are not yet available, so this

assumption awaits direct experimental validation. Patients

with either high-grade papillary nonmuscle-invasive dis-

ease or CIS are currently treated with the same adjuvant
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therapy (intravesical Bacillus Calmette–Guerin [BCG] im-

munotherapy), but it is by no means clear that BCG

produces comparable benefit in CIS and high-grade papil-

lary tumors [1,2]. Many high-grade papillary tumors

ultimately become BCG unresponsive, so clinicians are

then faced with the dilemma of whether to continue using a

bladder-sparing regimen or to employ definitive surgery.

The latter is certainly too aggressive for those patients

whose tumors could be controlled by local therapy, but

again there are no reliable tools to distinguish the tumors

that have the potential to metastasize from those that do

not. Muscle-invasive disease is managed with definitive

local therapy (chemoradiation) or surgery (cystectomy)

with or without perioperative systemic cisplatin-based

chemotherapy to treat subclinical metastatic disease, but it

is still not possible to distinguish the patients who warrant

chemotherapy from those who will not benefit from it. It

would also be tremendously useful to have biomarkers that

would enable patients and their physicians to choose

between bladder-sparing regimens such as chemoradiation

and cystectomy. Overall, it is hoped that by understanding

the molecular mechanisms that give rise to papillary and

nonpapillary bladder cancers, it will be possible to develop

methods to inform clinical decision making at every step of

disease progression and management.

3.2. Intrinsic subtypes of cancer

The widespread use of genomics to investigate cancer

heterogeneity is transforming our understanding of cancer

biology. A pioneering study in leukemia demonstrated that

mRNA expression profiling could be used to distinguish ALL

from AML with a high degree of accuracy [4], and a

subsequent study used gene expression profiling to identify

two previously unrecognized molecular subtypes of diffuse

large B-cell lymphoma [5]. Importantly, patients whose

tumors belonged to one of the subtypes (‘‘germinal center-

like DLBCL’’) had better clinical outcomes than patients with

the other (‘‘activated B-like DLBCL’’) [5]. Parallel studies in

breast cancer revealed that they could also be grouped into

‘‘intrinsic subtypes’’ that had very different biological

properties and behaved clinically as distinct disease entities

[6,7]. Patients with basal-like or HER2-enriched breast

tumors had poor clinical outcomes in the absence of

systemic therapy, but many of them benefited greatly from

neoadjuvant chemotherapy (NAC) [[7_TD$DIFF]8,9]. Patients with

HER2-enriched tumors also obtained significant clinical

benefit from ERBB2 antagonists [[8_TD$DIFF]10]. In the absence of

perioperative chemotherapy, women with luminal tumors

had better prognoses [ [9_TD$DIFF]11] and, when given perioperative

chemotherapy, most patients also obtained little to no

benefit [ [10_TD$DIFF]8,12]. Rather, they obtained major chemopreven-

tive clinical benefit from adjuvant therapy with selective

estrogen receptor modulators (SERMs), which reduced

disease recurrence by about 50% [[9_TD$DIFF]11]. In contrast, SERMs

produced no benefit in patients with basal-like or HER2-

enriched tumors [[9_TD$DIFF]11]. Subsequent studies identified molec-

ular subtypes in head and neck squamous cell carcinomas

(SCCs) [ [11_TD$DIFF]13], glioblastomas [ [12_TD$DIFF]14], and pancreatic cancers [[13_TD$DIFF]15],
ial Veterans Hospital from ClinicalKey.com by Elsevier on August 08, 2018.
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and more recent studies are characterizing molecular

subtypes that cut across cancer types [ [14_TD$DIFF]16]. The potential

clinical significance of the molecular subtypes of these

cancers is being investigated.

3.3. DNA alterations in bladder cancers

The recently completed TCGA MIBC (BLCA) project produced

a comprehensive, open-access catalog of DNA alterations in a

cohort of over 400 MIBCs. The first TCGA ‘‘bladder cancer

study’’ reported the results of a comprehensive integrated

genomic analysis of131 tumors [[15_TD$DIFF]17], and a recent review

article provided an update on 238 tumors [[5_TD$DIFF]18]. These initial

results were also incorporated into a pan-cancer analysis

that compared the genomic features of 12 different types of

cancers [[14_TD$DIFF]16]. Furthermore, a thorough review of the different

genomic alterations that characterize low-grade papillary

tumors (Ta) and MIBCs was also published recently

[1]. Finally, a recent paper reported the comprehensive

transcriptional analysis of a cohort of 460 patients with

NMIBC [[16_TD$DIFF]19]. Therefore, excellent, comprehensive summaries

of the major genomic alterations in the complete spectrum

of bladder cancers can be found elsewhere. The key findings

will now be summarized briefly.

3.3.1. Major drivers of mutagenesis

Cigarette smoking is an established risk factor for bladder

cancer [2], and chronic exposure to cigarette smoke-like

nitrosamines (ie, BBN) causes bladder cancer in rodents

[[17_TD$DIFF]20]. Aromatic compounds in cigarette smoke produce DNA

damage, so it was expected that a history of cigarette

smoking would be associated with specific tobacco-related

DNA mutations in TCGA exome sequencing data. Analyses

of the initial TCGA cohort of 131 tumors failed to identify

such signatures, although tumors from smokers were

enriched with specific DNA methylation patterns

[[15_TD$DIFF]17]. Interestingly, a significant number of bladder cancers

contained mutations in NFE2L2 (NRF2) and TXNIP [[5_TD$DIFF]18]

genes, which encode proteins that inhibit the damaging

effects of the reactive oxygen species that are produced in

response to cigarette smoke carcinogens. Although there

was no obvious relationship between the NFE2L2 and/or

TXNIP alterations and smoking status in bladder cancers,

mutations in these genes were enriched in lung and head

and neck cancers from smokers [ [18_TD$DIFF]21,22], suggesting poten-

tial causal roles in carcinogenesis and/or tumor progression.

A more recent reanalysis of the original TCGA cohort

identified a novel DNA mutational signature associated

with inactivating mutations in the gene encoding the

nucleotide excision repair protein, ERCC2, and established

that these signatures were enriched in tumors from

smokers [ [19_TD$DIFF]23]. Importantly, the signature was much more

strongly associated with ERCC2 inactivation than it was

with smoking, suggesting that the former was the driving

force underlying the signature [[19_TD$DIFF]23].

The APOBEC family of antiviral enzymes promotes

cytosine deamination and mutagenesis of single-stranded

DNA and mRNAs. Among the APOBEC genes, APOBEC3B

appears to be most commonly overexpressed in solid
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tumors, and bladder cancers stand out for expressing some

of the highest levels of APOBEC3B among all solid

malignancies [[20_TD$DIFF]24]. Aside from being upregulated by infec-

tion, APOBEC3B activity can also be increased by chemical

carcinogens, which promote APOBEC3B-mediated mutagen-

esis by inducing the formation of the single-strand DNA

intermediates that are formed during DNA damage and

repair [[20_TD$DIFF]24]. Analyses of mutational patterns have revealed

that a large proportion of the total mutational burden in

bladder cancer is attributable to APOBEC3B-mediated

mutagenesis [[21_TD$DIFF]17,24,25], and the prevalence of APOBEC3B-

associated mutations increased with subclonal evolution in

lung cancers [[22_TD$DIFF]24,26]. Furthermore, it was recently found that

an APOBEC mutation signature was significantly enriched in

high-risk NMIBCs [[16_TD$DIFF]19]. Taken together, accumulating data

suggest that APOBEC-mediated mutations may play a

central causative role in driving bladder cancer genomic

heterogeneity and disease progression.

3.3.2. Major targets of DNA alterations

Histone modifications play central roles in the regulation of

gene expression, and whole exome sequencing studies

revealed that mutations in chromatin-modifying enzymes

were extremely common in bladder cancers [ [23_TD$DIFF]27]. Among

them, inactivating mutations in the histone H3 lysine 27

(H3K27) demethylase KDM6A (also known as UTX) were

most common and enriched in NMIBCs (32–43%) [ [24_TD$DIFF]18,27],

whereas inactivating mutations in the SET family histone

H3 lysine 4 (H3K4) methyltransferase MLL2 were more

common in MIBCs (19%) [ [5_TD$DIFF]18], and mutations in KDM6A and

MLL2 were mutually exclusive [[5_TD$DIFF]18]. Although the biological

consequences of these events have not been defined

experimentally, they would be expected to lead to

decreased RNA polymerase accessibility, gene silencing,

and a less well-differentiated phenotype. In-depth chroma-

tin immunoprecipitation/sequencing (ChIP-seq) studies are

required to directly address this hypothesis.

As introduced above, one of the most striking differences

between NMIBCs and MIBCs is the relative frequency of TP53

gene inactivation and relative levels of genomic instability.

Overall, mutations in TP53 were observed in about 50% of

MIBCs but were less common in NMIBCs (20% of tumors)

[[25_TD$DIFF]1,28–[26_TD$DIFF]30]. Interestingly, 85% of high-grade NMIBCs (T1G3)

contained p53 pathway alterations [[27_TD$DIFF]31]. Furthermore, am-

plification of TP53’s inhibitor, MDM2, occurred in approxi-

mately 9% of MIBCs [[28_TD$DIFF]1,18], indicating that TP53 inactivation

occurred in the majority of muscle-invasive tumors. RB1

inactivation was also much more common in MIBCs as

compared with that in NMIBCs [[5_TD$DIFF]18], and mutations in RB1

tended to be associated with mutations in TP53

[[5_TD$DIFF]18]. Interestingly, the same patterns were not observed

with RB1’s upstream inhibitor (CDKN2A), which was deleted

in approximately equal numbers of NMIBCs and MIBCs (50%)

[1]. Dysregulation of other genes that promote cell cycle

progression was also common in bladder cancers. Amplifi-

cation of cyclin D1 was reported in approximately 20% of

NMIBCs and MIBCs [1], and amplification of E2F3 was

observed in high-grade T1 lesions and MIBCs [[29_TD$DIFF]1,32]. An early

study reported that MYC amplification was associated with
rial Veterans Hospital from ClinicalKey.com by Elsevier on August 08, 2018.
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an advanced stage and grade [[30_TD$DIFF]33], and in more recent

studies, MYC amplification was observed in about 13% of

MIBCs [[5_TD$DIFF]18].

Inactivating mutations in genes encoding DNA repair

proteins were also relatively common in MIBCs [[31_TD$DIFF]17,34]. The

most prevalent were inactivating mutations in ERCC2 (12%

of tumors) [ [5_TD$DIFF]18], which were linked to sensitivity to

neoadjuvant cisplatin-based combination chemotherapy

[ [32_TD$DIFF]35]. Inactivating mutations in several other DNA repair

proteins were also linked to cisplatin sensitivity [[33_TD$DIFF]36].

Inactivating mutations in STAG2, a component of the

cohesin complex that functions in chromosome segrega-

tion, were common in NMIBCs and MIBCs [ [34_TD$DIFF]34,37–[35_TD$DIFF]40], but

their biological significance remains unclear; the canonical

role of the cohesin complex would suggest that inactivation

of STAG2 should produce genomic instability, but the

significant enrichment of STAG2 mutations in low-grade

tumors that largely lack aneuploidy [[35_TD$DIFF]40] argues against this

being their most relevant effect in bladder cancers [[34_TD$DIFF]34,37–

[35_TD$DIFF]40]. Alternative mechanisms include alterations in high-

order chromatin organization and gene expression.

Activating mutations in the telomerase (TERT1) promot-

er were common in both NMIBCs and MIBCs [ [36_TD$DIFF]41–[37_TD$DIFF]48],

making them attractive biomarkers for early detection of

recurrence [ [38_TD$DIFF]44,45] and potentially as therapeutic targets

across the course of disease progression.

Bladder cancers often contained DNA alterations involv-

ing oncogenes or tumor suppressor genes that regulate

activation of the Ras–MEK–ERK and PI3 kinase–AKT–mTOR

pathways. These pathways control progression through the

RB1-dependent G1-S cell cycle restriction point, anabolic

metabolism, and cell survival. Activating mutations in

FGFR3 were detected in up to 80% of NMIBCs and

approximately 15–20% of MIBCs, consistent with earlier

studies [[39_TD$DIFF]1,49,50]. Preclinical studies demonstrated that

these FGFR3 mutations, which cause constitutive receptor

activation, functioned to promote proliferation via down-

stream activation of the ERKs [ [40_TD$DIFF]51,52]. Papillary and

nonpapillary cancers contained similar frequencies of

activating RAS mutations (5–10%) [ [41_TD$DIFF]51], which also function

to promote downstream ERK activation. RAS and FGFR3

mutations occurred in a mutually exclusive fashion [ [5_TD$DIFF]18], so

together they probably accounted for enhanced ERK

activation in almost 90% of NMIBCs. Although activating

FGFR3 mutations were less common in MIBCs, some MIBCs

contained activating FGFR3 fusions [ [42_TD$DIFF]53]. They also con-

tained activating mutations, fusions, or amplification of

genes encoding members of the epidermal growth factor

receptor (EGFR) family [[15_TD$DIFF]17], including the EGFR itself (about

10% of tumors), ERBB2 (about 10% of tumors), ERBB3 (about

10% tumors), and ERBB4 (about 6% of tumors). Other tumors

contained inactivating mutations in the RAS inhibitor, NF1

(over 10%) [ [28_TD$DIFF]1,18]; so, together, these alterations probably

promoted RAS pathway activation in over 50% of MIBCs.

With respect to the PI3 kinase/AKT pathway, activating

PIK3CA mutations—predominantly in the region coding for

the helical domain, probably caused by APOBEC3B-mediat-

ed mutagenesis [[20_TD$DIFF]24]—were common in both NMIBCs and

MIBCs. Amplification of AKT3 or inactivating mutations in
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various negative regulators of the PI3 kinase/AKT/mTOR

pathway (including the lipid phosphatase PTEN) were also

observed, leading to predicted pathway activation in almost

75% of MIBCs [ [28_TD$DIFF]1,18].

Mutations and/or amplification of transcription factors

implicated in urothelial terminal differentiation were found

in MIBCs [ [5_TD$DIFF]18]. Amplifications of peroxisome proliferator

activator receptor-gamma (PPARG), GATA3, and SOX4 were

frequently detected, occurring in about 10–15% of tumors

[[5_TD$DIFF]18]. Mutations in ELF3, RXRA, and KLF5 were also relatively

common, occurring in 5–10% of tumors [ [5_TD$DIFF]18]. Mutations in

FOXA1 were observed in about 5% of tumors, and deletion of

FOXQ1 occurred in about 10% of tumors [ [5_TD$DIFF]18]. Inactivating

mutations in NOTCH1 and NOTCH2 have also been reported

in MIBCs [ [43_TD$DIFF]54], and preclinical studies in mouse models

suggested that they promoted tumor progression by

facilitating epithelial-to-mesenchymal transition (EMT)

[[44_TD$DIFF]55]. Finally, mutations in the ubiquitin ligase and NOTCH

pathway regulator, FBXW7, occurred in about 7% of MIBCs

[[5_TD$DIFF]18]. Although inactivating mutations in other develop-

mental pathways were less common, preclinical studies

have suggested that activation of the Wnt/b-catenin

pathway and downregulation of the sonic hedgehog

pathway also contribute to bladder cancer progression

[[45_TD$DIFF]56,57].

3.4. Molecular subtypes of bladder cancer

The identification and validation of molecular subtypes in

other malignancies provided the impetus to use transcrip-

tome profiling to search for molecular subtypes in bladder

cancers. The initial results established that unsupervised

analyses of gene expression could distinguish most NMIBCs

from most MIBCs [ [46_TD$DIFF]58– [47_TD$DIFF]60]. Furthermore, early studies of

NMIBCs identified gene expression signatures associated

with disease aggressiveness using unsupervised analyses

[[48_TD$DIFF]61– [49_TD$DIFF]63]. These studies showed the first indications of the

presence of major molecular subtypes in bladder cancer

[[50_TD$DIFF]19,64]. One of our groups (M.H., Lund University, Lund,

Sweden) extended these findings by implicating differences

in[51_TD$DIFF] TP53 mutation frequencies and/or genomic instability to

the formation of these two major gene expression subtypes

[[52_TD$DIFF]28]. Subsequently, they used a large cohort of NMIBCs and

MIBCs (n = 308) to identify additional subtypes within the

two major clusters [[53_TD$DIFF]65]. The Lund classification revealed

that bladder cancers could be segregated into at least five

molecular subtypes, termed urobasal A (uroA), urobasal B

(uroB), genomically unstable (GU), infiltrated, and SCC like

(SCCL) [ [53_TD$DIFF]65]. The uroA and uroB tumors were characterized

by stratified expression of differentiation-associated bio-

markers reminiscent of what is observed in the normal

urothelium, whereas differentiation-associated biomarkers

displayed abnormal expression in the GU and SCCL tumors.

The SCCL subtype was characterized by expression of

squamous keratins (KRT5, KRT6, and KRT14) and keratini-

zation-associated genes [ [54_TD$DIFF]66], and the SCCL and uroB tumors

were both enriched with various degrees of squamous

differentiation markers [ [55_TD$DIFF]65,66]. As its name implies, the

infiltrated subtype was characterized by the expression of
ial Veterans Hospital from ClinicalKey.com by Elsevier on August 08, 2018.
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biomarkers characteristic of immune and other stromal

cells.

Analysis of a large cohort of 460 tumors recently

identified three distinct subtypes (Classes 1–3) in NMIBC

[[16_TD$DIFF]19] The study validated previously observed subgroups in

NMIBC and identified a new subtype (Class 3) that showed

basal-like characteristics and pronounced expression of

lncRNAs. Mutations were called from RNA-seq data, which

have potential limitations. Frequent mutations were

observed in genes encoding proteins involved in chromatin

organization and cytoskeletal functions. Furthermore, high-

risk tumors (Class 2) were enriched for mutations in, for

example, TP53 and ERBB2, and for APOBEC-related muta-

tions. The observation of enrichment for APOBEC-related

mutations in high-risk NMIBCs indicates that APOBEC may

drive disease progression in NMIBC.

Other groups performed independent studies to identify

molecular subtypes in cohorts of MIBC [[56_TD$DIFF]17,67,68]. A group led

by one of us (W.K., University of North Carolina [UNC], Chapel

Hill, NC, USA) assembled a meta-dataset of 262 high-grade

tumors from four previously published cohorts for discovery

and created a new dataset from 49 tumors collected at

Memorial Sloan Kettering Cancer Center for validation. Using

consensus clustering, they identified two molecular subtypes

of MIBC in both datasets [[57_TD$DIFF]68]. The genes that distinguished

the two clusters had previously been implicated in urothelial

differentiation and overlapped substantially with the genes

that distinguished the basal-like and luminal intrinsic

subtypes of breast cancer, leading the UNC investigators to

name their MIBC subtypes ‘‘basal like’’ and ‘‘luminal’’ [[57_TD$DIFF]68]. In

parallel, another of our groups (W.C. and D.J.M., University of

Texas MD Anderson Cancer Center, Houston, TX USA) created

two whole transcriptome datasets (n = 73 and n = 57 tumors)

and used unsupervised hierarchical clustering to identify

three candidate subtypes [[58_TD$DIFF]67]. The MD Anderson group also

noted that the genes that characterized two of the subtypes

were similar to the ones that distinguished basal-like and

luminal breast cancers, prompting them to term them ‘‘basal’’

and ‘‘luminal’’ [[58_TD$DIFF]67]. The group’s third subtype was distin-

guished from the other two by stromal biomarkers and an

active p53 gene expression signature, so they termed it ‘‘p53-

like’’ [[58_TD$DIFF]67]. Finally, TCGA used a combination of different

approaches to identify four molecular subtypes in an RNA-

seq dataset generated from 129 tumors [[15_TD$DIFF]17]. Although TCGA

discussed whether or not to name them ‘‘basal’’ and

‘‘luminal’’ in the first marker paper, they settled on a more

conservative approach and termed them ‘‘clusters I–IV’’ but

discussed their similarities to the intrinsic subtypes of breast

cancer [[15_TD$DIFF]17]. In addition, TCGA noted that cluster I was

enriched with tumors having papillary features and cluster III

with tumors having squamous features, inspiring the labels

‘‘papillary’’ and ‘‘squamous,’’ respectively [[15_TD$DIFF]17]. As introduced

above, a group based at the Broad Institute then repeated the

exercise on an interim expanded cohort of 238 tumors and

largely reproduced their original data [[5_TD$DIFF]18]. They renamed the

clusters ‘‘basal,’’ ‘‘immune undifferentiated,’’ ‘‘luminal im-

mune,’’ and ‘‘luminal’’ to reflect the dominant features they

found in the gene expression signatures that defined each

subtype [[5_TD$DIFF]18].
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Parallel efforts attempted to reconcile the molecular

subtypes identified by the groups using shared whole

transcriptome datasets [ [59_TD$DIFF]69– [60_TD$DIFF]71]. The results of this work

revealed a significant overlap among the subtype calls. The

most upstream division occurred at the level of the basal

versus luminal bifurcation proposed by the group at UNC

[ [59_TD$DIFF]69– [60_TD$DIFF]71]. The other subtypes appeared to mostly represent

subdivisions of these subtypes. The MD Anderson p53-like

subtype, which shared similarities with the Lund infiltrated

subtype [[53_TD$DIFF]65], TCGA’s original cluster II [[15_TD$DIFF]17], and the updated

TCGA ‘‘immune undifferentiated’’ and ‘‘luminal immune’’

subtypes [ [5_TD$DIFF]18], consisted of a mixture of basal and luminal

tumors that were heavily infiltrated with stromal cells, and

the Lund uroA and GU tumors largely corresponded to UNC

luminal tumors. Although the uroB tumors were assigned to

the basal subtypes identified by other groups, the Lund

group recognized that the uroB tumors contained FGFR3

pathway gene expression signatures and were enriched

with activating FGFR3 mutations, and concluded that they

probably corresponded to progressed uroA tumors [[53_TD$DIFF]65].

Subtype membership had important implications for

clinical outcomes. Similar to basal-like breast cancers [7], the

Lund SCCL and uroB tumors and the squamous/basal tumors

identified by the groups at UNC, MD Anderson Cancer Center,

and TCGA were aggressive, and associated with advanced

stage and metastatic disease at presentation, squamous

histopathological features, and shorter survival in the

absence of neoadjuvant cisplatin-based combination che-

motherapy [[61_TD$DIFF]17,65,67,68,72]. However, about half of basal

tumors were downstaged by NAC [[58_TD$DIFF]67], and early preliminary

data suggested that the overall benefit provided by NAC

might be greatest in patients whose tumors belonged to the

basal molecular subtype [[62_TD$DIFF]73]. If these preliminary data are

confirmed in larger and more mature clinical datasets, the

results would be reminiscent of past experience in breast

cancer, where NAC has produced the greatest benefit in

patients with highly proliferative basal-like (and HER2-

enriched) tumors [[10_TD$DIFF]8,12]. Although the molecular mecha-

nisms that underlie the benefit produced by chemotherapy

in basal tumors are still under investigation, basal human

bladder cancer cell lines are more sensitive to cisplatin-

induced apoptosis than are luminal cell lines (A. Ochoa, D.J.

McConkey, unpublished observations). Conversely, NAC

produced less clinical benefit in patients whose tumors

belong to the infiltrated/p53-like subtype in the clinical trials

that have been performed to date [[63_TD$DIFF]67,73].

The variable levels of immune cell infiltration observed

in the bladder cancer subtypes [[5_TD$DIFF]18] suggested that patients

with these tumors might derive different amounts of

benefit from immunotherapies [[64_TD$DIFF]74]. Consistent with these

predictions, early results suggest that TCGA subtype

membership may be an independent predictor of benefit

from therapy with the anti-PDL1 antibody atezolizumab

[ [65_TD$DIFF]75]. In the phase II trial that led to Food and Drug

Administration approval of the drug, patients whose tumors

belonged to TCGA cluster II obtained somewhat more

benefit than patients whose tumors belonged to the other

subtypes, and patients with ‘‘papillary’’ (cluster I) tumors

derived little benefit, if at all [ [65_TD$DIFF]75]. Importantly, immune
rial Veterans Hospital from ClinicalKey.com by Elsevier on August 08, 2018.
. Copyright ©2018. Elsevier Inc. All rights reserved.
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Fig. 1 – Comparison of subtype calls in TCGA’s final dataset. Each group used TCGA’s normalized RNA-seq data to assign TCGA’s tumors to the UNC, MD
Anderson, or Lund subtypes. Published calls made by a group at The Broad Institute [[5_TD$DIFF]18] and TCGA were also included for comparison. The top left
panel provides a schematic overview of the relationships among the calls made by the five groups. The heat maps display the relative expression of
the gene sets that characterize each group’s subtypes. The red and green colors correspond to high and low relative expression, respectively.
GU = genomically unstable; MDA = MD Anderson; NA = not applicable; SCCL = squamous cell carcinoma like; TCGA = The Cancer Genome Atlas;
UNC = University of North Carolina; uroA = urobasal A; uroB = urobasal B.
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infiltration and tumor PDL1 expression are actually highest

in TCGA cluster IV, which corresponds to a subset of

‘‘mesenchymal’’ basal tumors [[66_TD$DIFF]76], and this connection

between EMT and immune infiltration and tumor PDL1

expression was observed across solid tumors in a recent pan-

cancer analysis [[67_TD$DIFF]77]. Therefore, even though TCGA cluster IV

tumors are heavily infiltrated with lymphocytes, the T cells

appear to be more actively suppressed than are the T cells in

the tumors that belong to TCGA cluster II luminal subtype

[[66_TD$DIFF]76], which could explain why cluster IV tumors are

somewhat less sensitive to immune checkpoint blockade.

It could be noteworthy that atezolizumab provided maximal

benefit in a portion of the tumors that belonged to the

subtype that had been previously defined as being more

resistant to conventional chemotherapy [[63_TD$DIFF]67,73]. In other

words, if the findings are validated, cisplatin-based chemo-

therapy and atezolizumab may produce clinical benefit in

complementary populations of patients.

3.5. Genomic alterations in molecular subtypes of MIBC

Given past observations in the molecular subtypes in other

cancers, it seemed likely that the molecular subtypes of

bladder cancer would contain distinct mutations and CNAs.

To test this hypothesis, we established a collaboration to
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assign the tumors from the complete TCGA RNA-seq dataset

(n = 408) to subtypes using the classifiers developed at UNC,

MD Anderson, and Lund University. We also obtained the

subtype calls from the original TCGA marker paper [ [15_TD$DIFF]17] and

the subsequent analyses performed by the group at the

Broad Institute[68_TD$DIFF] (n = 238 tumors) [ [5_TD$DIFF]18], in order to compare

the calls with those made by our groups. We then examined

each subtype for its content of specific DNA mutations

(n = 391, available from Firehose [https://gdac.

broadinstitute.org/]) and CNAs (n = 404, available from

cBioportal [http://www.cbioportal.org/]). The results con-

firmed the patterns of subtype overlap noted in a recent

study [[59_TD$DIFF]69]. Specifically, the UNC basal-like subtype

contained almost all the MD Anderson basal, Lund SCCL,

and Broad basal tumors, and TCGA clusters III and IV (Fig. 1),

strongly supporting the consensus view that the basal/SCC-

like subtype is consistently observed in muscle-invasive

tumors [[69_TD$DIFF]78]. The UNC basal-like subtype also contained half

of the MD Anderson p53-like, most of the Lund uroB and

infiltrated, and all the Broad immune undifferentiated

tumors (Fig. 1). The UNC luminal subtype contained almost

all the MD Anderson luminal tumors, half of the MD

Anderson p53-like tumors, most of the Lund GU and uroA

tumors, most of the Broad luminal immune and luminal

tumors, and TCGA clusters I and II (Fig. 1).
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We then used the top 30 most prevalent mutations and

CNAs in TCGA’s whole exome sequencing dataset in

Firehose and cBioportal, respectively, and examined their

prevalence in the UNC basal-like and luminal subtypes

(Supplementary Fig. 1 and 2). Included among them were

alterations that were enriched in the breast cancer intrinsic

subtypes (TP53, RB1, ERBB2, and PIK3CA), genes that

displayed different mutation frequencies in NMIBCs versus

MIBCs (FGFR3, KDM6A, and STAG2), and genes that encode

for mRNAs that were enriched in basal or luminal MIBCs

(EGFR, PPARG, GATA3, ELF3, and ERBB3). Consistent with the

overall hypothesis, several of the alterations were signifi-

cantly enriched in either UNC basal-like or luminal cancers

(Fig. 2).

We then investigated whether creating further subdivi-

sions of the UNC molecular subtypes caused additional

patterns of enrichment as had been documented previously

[ [59_TD$DIFF]69]. Although the mutations and CNAs that were enriched

in the UNC basal-like and luminal MIBCs were also enriched

in the MD Anderson basal and luminal MIBCs, isolating the

p53-like tumors did not further enhance enrichment

(Fig. 3). Similarly, no mutations or CNAs were specifically
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enriched in the Lund infiltrated tumors as compared with

the other Lund subtypes in this panel (Fig. 4). Therefore, it

appears that the biology of these infiltrated tumors is

dictated less by genetic influences than by other factors,

such as the tumor microenvironment, explaining why their

subtype membership was somewhat unstable [[70_TD$DIFF]67,69]. On

the other hand, subdividing the UNC basal-like and luminal

tumors into the other Lund subtypes yielded additional and

highly informative patterns of mutation and CNA enrich-

ment. The uroA and uroB tumors were both highly enriched

with activating FGFR3 mutations [ [71_TD$DIFF]65,66,69], and the uroB

tumors also contained a higher number of CDKN2A (p16)

deletions (Fig. 4). The uroA and uroB tumors were also

characterized by fewer RB1 mutations, and the uroB tumors

could be distinguished from the uroA tumors by their

content of PIK3CA, NFE2L2, ERBB2, and ERBB3 mutations

(Fig. 4). Finally, the Lund subdivision of the UNC luminal

MIBCs into the GU and uroA subtypes yielded additional

informative patterns of mutation and CNA enrichment

[[59_TD$DIFF]69]. The GU tumors could be distinguished from the uroA

tumors by the absence of activating FGFR3 mutations and by

the presence of TP53 and ERCC2 mutations, RB1 deletions,
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and amplification of PPARG, GATA3, ERBB2, and E2F3/SOX4

(Fig. 4).

4. Conclusions

Molecular subtypes of bladder cancer are enriched with

specific genetic alterations. As recognized previously [ [57_TD$DIFF]68],

basal/SCC-like MIBCs frequently contain RB1 mutations, a

property that they share with basal-like breast cancers

[[72_TD$DIFF]79,80]. Basal/SCC-like MIBCs are also enriched with NFE2L2

mutations, which have also been identified in lung and head

and neck squamous cancers [ [18_TD$DIFF]21,22]. Luminal tumors

contain more alterations in FGFR3 and KDM6A (also known

as UTX) genes that are more commonly mutated in NMIBCs

as compared with that in MIBCs [1]. These observations

support the emerging conclusion that FGFR3 mutations

mark the luminal MIBCs that correspond to the papillary

NMIBCs that have progressed to become muscle invasive.

Alterations affecting several transcription factors that

appear to play important roles in urothelial terminal

differentiation [ [73_TD$DIFF]81,82] (PPARG, GATA3, RXRA, and ELF3)
Downloaded for Anonymous User (n/a) at VISN 12 - William S Middleton Memo
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were also enriched in luminal cancers. Biological effects of

these alterations will need to be explored in future

functional studies.

The Lund subclassifications divide the UNC/MD Ander-

son/TCGA basal/SCC-like and luminal subtypes in ways that

have important biological and clinical implications. Al-

though they cluster together with the squamous/basal

tumors in the UNC, MD Anderson, and TCGA classifications,

the genetic alterations in the uroB tumors more closely

resemble those present in the luminal uroA subtype,

supporting the conclusion that they represent progressed

versions of the uroA cancers. The precise mechanisms that

cause them to appear more ‘‘basal’’ (at the molecular level,

and also in terms of their enrichment with squamous

histological features and lethality) will be very interesting;

their relatively high content of RB1 and NFE2L2 mutations

suggests possible mechanisms. The existence of uroB

tumors also suggests that basal versus luminal subtype

class ‘‘switching’’ is possible. Clinically, it will be interesting

to determine whether the uroA and uroB tumors are equally

sensitive to FGFR inhibitors.
rial Veterans Hospital from ClinicalKey.com by Elsevier on August 08, 2018.
. Copyright ©2018. Elsevier Inc. All rights reserved.
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The subdivision in the UNC/MD Anderson/TCGA luminal

tumors that is created by the Lund classifier also appears to

be extremely important. It is very interesting that the GU

and uroA tumors are enriched with somewhat mutually

exclusive patterns of mutations and CNAs involving key

luminal genes (PPARG/GATA3 vs FGFR3). Overall, more of the

top genes in the GU tumors were affected by CNAs than they

were in the other molecular subtypes. The fact that GU

tumors are enriched with ERCC2 mutations is also

noteworthy. It will be interesting to determine their

relationships to cigarette smoking [[19_TD$DIFF]23] and relative

sensitivities to NAC [[32_TD$DIFF]35]. Given that ERCC2, RB1 [ [33_TD$DIFF]36], and

ERBB2 [ [74_TD$DIFF]83] mutations and CNA levels in general [ [32_TD$DIFF]35] have

been linked to chemosensitivity, it seems likely that

patients with GU tumors will obtain greater direct clinical

benefit from NAC than those who have uroA tumors.

It should be emphasized that our understanding of the

biological and clinical properties of the molecular subtypes

of bladder cancer is still fairly limited. Most of the available

genomic and associated clinical data were obtained

retrospectively, and the clinical follow-up is fairly short.

Although the total number of profiled bladder cancers is

increasing, it is relatively small, and challenges associated

with merging the data that have been and continue to be

generated on different genomic platforms make generating

meta-datasets difficult. Preclinical studies implicating

different cells of origin in the formation of papillary [ [75_TD$DIFF]84]

and nonpapillary [[76_TD$DIFF]56] cancers provide possible explana-

tions for the origins of basal and luminal bladder cancers,

but their relevance to human carcinogenesis remains

unclear. The specific effects of most of the DNA alterations

that have been identified in bladder cancers need to be

explored much more deeply, presumably in preclinical

models, to determine whether subtype context is important

for their effects. The new information provided by TCGA and

other groups will enable laboratory scientists to create

models that more accurately capture important aspects of

the genomic heterogeneity observed in patients.

We do not yet know whether molecular subtype

membership is a stable, ‘‘intrinsic’’ feature of a given

tumor. Bioinformatic analyses have already demonstrated

that membership in the p53-like/infiltrated/TCGA cluster II

subtype is relatively unstable, and we have demonstrated

that luminal tumors often become p53-like after NAC

[ [58_TD$DIFF]67]. These observations could explain why TCGA cluster II

membership is not even more strongly associated with

response to immune checkpoint blockade than has been

observed in recently completed clinical trials [ [65_TD$DIFF]75]. In

addition, as noted above, the uroB subtype may establish

a precedent for luminal-to-basal subtype ‘‘switching’’ in

bladder cancer. Muscle-invasive tumors can be multifocal,

and our collaborators are currently performing whole-

organ mapping studies to determine whether all these

multifocal tumors belong to the same subtype (B. Czerniak,

personal communication). NMIBCs are prone to recurrence,

and it will be important to perform longitudinal studies to

determine how often subtype membership is maintained in

these recurrences. Ongoing studies are performing deep

genomic characterizations of metastases, and it will be
Downloaded for Anonymous User (n/a) at VISN 12 - William S Middleton Memor
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interesting to see whether primary tumors and metastases

always belong to the same subtype. Finally, additional

comparisons of the DNA alterations in and subtype

membership of tumors collected before and after neoadju-

vant therapies, and where possible, systemic therapy for

metastatic disease, must still be performed to determine

whether subtype membership is stable. This information

has important implications for prognostication and sub-

type-based therapy.
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Analysis and interpretation of data: Choi, Ochoa, McConkey.

Drafting of the manuscript: Choi, Ochoa, McConkey.

Critical revision of the manuscript for important intellectual content: Aine,
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