Overexpression of HIF1α in Hunner Lesions of Interstitial Cystitis: Pathophysiological Implications

Yoshiyuki Akiyama, Jimpei Miyakawa, Michael A. O’Donnell et al.

Correspondence: Yoshiyuki Akiyama (email: yakiyama-tky@umin.ac.jp).

Full-length article available at www.auajournals.org/10.1097/JU.0000000000002278.

Study Need and Importance: Hunner-type interstitial cystitis is an intractable, debilitating chronic inflammatory disease of the urinary bladder extremely deteriorating patients’ quality of life by persistent pelvic pain in conjunction with lower urinary tract symptoms such as urinary frequency and urgency. The etiology of Hunner-type interstitial cystitis remains elusive, and that hinders the development of curable treatments or diagnostic markers. There is an urgent need to clarify its pathophysiology to find therapeutic targets and disease biomarkers.

What We Found: We performed the genomic and immunopathological characterization of the Hunner lesion, a characteristic cystoscopic marker of Hunner-type interstitial cystitis, by exploring the whole-transcriptomic landscape and quantitative immunohistochemical and polymerase chain reaction analyses of key inflammatory cells and cytokines in both Hunner lesions and background bladder mucosa (nonlesion areas) of 25 patients with Hunner-type interstitial cystitis (see figure). RNA sequencing identified 109 differentially expressed genes and 30 significantly enriched biological pathways in Hunner lesions, including hypoxia-inducible factor (HIF)1α signaling pathway, PI3K-Akt signaling pathway, RAS signaling pathway and MAPK signaling pathway. Quantitative polymerase chain reaction and immunohistochemical analyses confirmed the significant up-regulation of both mRNA and protein levels of HIF1α in Hunner lesions. Otherwise, there were no significant differences between Hunner lesions and nonlesion areas in terms of mRNA levels of inflammatory cytokines or histological features such as lymphoplasmacytic and mast cell infiltration, epithelial denudation and CD4/CD8 T-lymphocyte ratio.

Limitations: The modest sample size (25) and the lack of validation using independent resources limit interpretation of the results.

Interpretation for Patient Care: Our findings demonstrate significant overexpression of HIF1α and up-regulation of its related biological pathways in Hunner lesions. The results indicate that ischemia, in conjunction with inflammation, plays a pathophysiological role in Hunner-type interstitial cystitis and HIF1α could be a potential disease biomarker.
Overexpression of HIF1α in Hunner Lesions of Interstitial Cystitis: Pathophysiological Implications

Yoshiyuki Akiyama,1,* Jimpei Miyakawa,1 Michael A. O’Donnell,2 Karl J. Kreder,2 Yi Luo,2 Daichi Maeda,3 Tetsuo Ushiku,4 Haruki Kume1 and Yukio Homma5

1Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
2Department of Urology, University of Iowa, Iowa City, Iowa
3Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
4Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
5Japanese Red Cross Medical Center, Tokyo, Japan

Purpose: The aim of our study was to elucidate biological changes in Hunner lesions, which underlie the pathophysiology of Hunner-type interstitial cystitis, by characterizing their whole transcriptome and immunopathological profiles.

Materials and Methods: Paired bladder mucosal biopsies, 1 sample each from the Hunner lesion and nonlesion area, were obtained from 25 patients with Hunner-type interstitial cystitis. The samples were subjected to whole-transcriptome profiling; immunohistochemical quantification of CD3, CD4, CD8, CD20, CD138, mast cell tryptase, cytokeratin and HIF1α; and quantitative polymerase chain reaction for IFN-α, IFN-β, IFN-γ, TNF, TGF-β1, HIF1α, IL-2, IL-4, IL-6, IL-10 and IL-12A. The results were compared between the lesion and nonlesion areas.

Results: RNA sequencing identified 109 differentially expressed genes and 30 significantly enriched biological pathways in Hunner lesions. Up-regulated pathways (24) included HIF1α signaling pathway, PI3K-Akt signaling pathway, RAS signaling pathway and MAPK signaling pathway. By contrast, down-regulated pathways (6) included basal cell carcinoma and protein digestion and absorption. The mRNA levels of HIF1α, IFN-γ and IL-2, and the HIF1α protein level were significantly higher in lesion areas. Otherwise, there were no significant differences between the lesion and nonlesion samples in terms of mRNA levels of inflammatory cytokines or histological features such as lymphoplasmacytic and mast cell infiltration, epithelial denudation and CD4/CD8 T-lymphocyte ratio.

Conclusions: Our findings demonstrate significant overexpression of HIF1α and up-regulation of its related biological pathways in Hunner lesions. The results indicate that ischemia, in conjunction with inflammation, plays a pathophysiological role in this subtype of interstitial cystitis/bladder pain syndrome, particularly in Hunner lesions.

Key Words: cystitis, interstitial; RNA-seq; hypoxia-inducible factor 1, alpha subunit

Abbreviations and Acronyms
BPS = bladder pain syndrome
DEG = differentially expressed gene
EBV = Epstein-Barr virus
ESSIC = International Society for the Study of IC/BPS
FDR = false discovery rate
GO = gene ontology
HIC = Hunner-type interstitial cystitis
HIF = hypoxia-inducible factor
IC = interstitial cystitis
IFN = interferon
KEGG = Kyoto Encyclopedia of Genes and Genomes
QOL = quality of life
qPCR = quantitative polymerase chain reaction
TGF = transforming growth factor
TNF = tumor necrosis factor

Accepted for publication September 28, 2021.
Support: This study was financially supported by the KAKENHI Grants-in-Aid from the Japanese Society for the Promotion of Science (JSPS) (grant number 17H06639) (to YA).

Author contributions: Conceived and designed the experiments: YA. Performed the experiments: YA, JM. Analyzed the data: YA, JM. Wrote the paper: YA. Interpreted the data: Ya, YL, MAO, KJK, YH. Revised the manuscript critically: YL, DM, MAO, KJK, TU, HK, YH. Final approval of the version to be published: YA, YL, MAO, KJK, YH.

Competing interests: The authors have no relevant financial interests to disclose.

* Correspondence: Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan [telephone: +81-35-800-8753 (03-800-8753); FAX: +81-35-800-6435 (03-5800-6435); email: yakiyamauro-tky@umin.ac.jp].

https://doi.org/10.1097/JU.0000000000002278
INTERSTITIAL cystitis (IC)/bladder pain syndrome (BPS) is a chronic debilitating disorder characterized by persistent bladder/urethral pain and lower urinary tract symptoms such as urinary frequency and urgency. IC/BPS represents a symptomatic syndrome complex that can be classified into 2 distinct entities, depending on the presence or absence of Hunner lesions. IC/BPS accompanied by distinct inflammatory disease, whereas BPS is thought to be a noninflammatory condition. Evidence indicates that HIC is a distinct inflammatory disease, whereas BPS is thought to be a noninflammatory condition. Histologically, HIC is characterized by epithelial denudation and chronic inflammatory changes including stromal edema, neovascularization and dense inflammatory infiltrates composed predominantly of lymphoplasmacytic and mast cells. Of note, these inflammatory changes and epithelial denudation can be observed not only in Hunner lesions but also in the whole bladder wall including nonlesion bladder mucosa, indicating that HIC is a pancystitic disease. In a previous RNA-seq analysis, we identified a set of biological pathways that are significantly enriched in HIC relative to BPS and normal bladders. However, in that study we detected no significantly altered biological pathways between the Hunner lesion and nonlesion area of HIC. The similar genomic and histological characteristics of Hunner lesion and nonlesion areas are consistent with the pancystitic nature of HIC. However, the distinctive redness appearance of Hunner lesions and their predilection for particular bladder sites prompted us to perform a more in-depth analysis. The aim of our current study was to identify specific biological changes that may underlie the pathophysiology of Hunner lesions by exploring the whole-transcriptomic landscape using a larger cohort and an updated next-generation sequencing system. In addition, we used quantitative immunohistochemical and polymerase chain reaction (qPCR) analyses to identify key inflammatory cells and cytokines indicative of a paradigm of immune responses in Hunner lesions.

MATERIALS AND METHODS

Ethics Statement
This study was approved by the Institutional Review Board of The University of Tokyo (approval No. G10046). All participants gave written informed consent before study enrollment.

Participants and Sample Preparation
The participants in the study were 25 consecutive patients (including 23 women) diagnosed with HIC who underwent electrocautery of Hunner lesions with hydrodistension at The University of Tokyo Hospital from 2016 to 2018. Diagnosis of HIC was based on the East Asian clinical guidelines and the ESSIC criteria. Patients’ demographics were retrieved from medical records, including OSSI (O’Leary and Sant’s symptom index) and OSPI (O’Leary and Sant’s problem index; OSSI/OSPI), an 11-point numerical rating of pain intensity, with 0 indicating “no pain” and 10 indicating “the worst pain ever;” a 7-grade quality of life (QOL) scale derived from the International Prostate Symptom Score, with 0 indicating “excellent” and 6 indicating “terrible;” urinary frequency; maximum and average voided volume; and bladder capacity measured at hydrodistension under a pressure of 80 cmH2O. Paired cold-cup biopsy samples, one from Hunner lesion and one from a nonlesion area, were obtained from each patient before hydrodistension (supplementary fig. 1, https://www.jurology.com) and were stored at −80C until analysis. The supplementary material (https://www.jurology.com) describes further details.

RNA Library Preparation and NovaSeq Sequencing
Purified total RNA (10 ng) was prepared for mRNA amplification by 5’ template-switching PCR using the Clontech SMART-Seq® v4 Ultra® Low Input RNA kit (Clontech, Palo Alto, California). Amplified cDNA was fragmented and appended with dual-indexed barcodes using Illumina® Nextera® XT DNA Library Prep kits (Illumina, San Diego, California). Libraries were validated on an Agilent 4200 Tape Station system (Agilent, Santa Clara, California), pooled and sequenced on an Illumina NovaSeq 6000 using a 2 x 150 paired-end configuration. Raw sequence data (.BCL files) were converted into FASTQ format and de-multiplexed using the Illumina bcl2fastq 2.20 software. The supplementary material (https://www.jurology.com) provides further details.

RNA-Seq Data Processing
Clean paired-end reads were aligned to the UC Santa Cruz human reference genome (hg19) using GeneData Profiler Genome version 11.0.8 (GeneData, Basel, Switzerland). Mapped reads were assembled using STAR version 2.5.3a by referring to gene structures described in National Center for Biotechnology Information RefSeq. To quantify gene expression, FPKM (fragments per kilobase of exon per million mapped fragments) values for each gene model were calculated using GeneData Profiler Genome. The supplementary material (https://www.jurology.com) provides further details.

Differentially Expressed Gene (DEG) Analysis
RNA-seq data were analyzed using GeneData Analyst version 9.1.13 and Agilent Gene Spring software packages version 14.8 (Agilent Technologies). DEGs between lesion and nonlesion were identified based on the log2-normalized FPKM scores by a paired t-test followed by the Benjamini–Hochberg correction. The statistical significance of differences in gene
expression were evaluated at a false discovery rate (FDR) ≤ 0.05 and \(|\log_2(Ratio)| ≥ 1\).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Enrichment Analyses

Identified DEGs were subjected to GO slim analyses and KEGG pathway enrichment analysis using DAVID Bioinformatics Resources. The supplementary material (https://www.jurology.com) provides further details.

Histopathology and Immunohistochemistry

Immunohistochemistry was performed using a Ventana BenchMark XT autostainer (Ventana Medical Systems, Tucson, Arizona) and antibodies against CD3, CD4, CD8, CD20, CD138, mast cell tryptase, cytokeratin, and hypoxia-inducible factor-1α (HIF1α). Appropriate controls for each antibody were run in parallel (supplementary fig. 2, https://www.jurology.com). The supplementary material (https://www.jurology.com) provides further details.

Immunohistochemical Quantification

Digital immunohistochemical quantification was performed using the Tissue Studio software, version 3.5 (Definiens AG, Munich, Germany), as described previously. Analyzed data were expressed as cell density (cells/mm²) or the proportion of the whole-tissue sample area that was cytokeratin-positive, ie the “epithelium/specimen ratio” (%). Due to slight background staining of the stroma, digital image analysis could not be used to quantify HIF1α in the immunohistochemistry analyses; therefore, HIF1α expression was evaluated on the basis of the intensity of nuclear immunoreactivity and was scored as negative, mild, moderate, or strong, as per our previous study. The supplementary material (https://www.jurology.com) provides further details.

qPCR

Levels of mRNA encoding HIF1α, interferon (IFN)-α, IFN-β, IFN-γ, interleukin (IL)-2, IL-4, IL-6, IL-10 and IL-12A, transforming growth factor (TGF)-β1 and tumor necrosis factor (TNF) were analyzed by qPCR using TaqMan™ Gene Expression Assays (Thermo Fisher Scientific, San Jose, California; supplementary table 1, https://www.jurology.com). The supplementary material (https://www.jurology.com) provides further details.

RESULTS

Characteristics of the HIC Patients

Patient demographics are shown in table 1. The study cohort comprised 23 women and 2 men, all of whom were diagnosed with HIC. Mean age at surgery and duration of illness were 66.0±11.8 and 5.2±4.6 years, respectively. Average voided volume, maximum voided volume and maximum bladder capacity at hydrodistension were 102.9±51.7, 168.0±90.5 and 394.0±155.0 mL, respectively. OSS/OSPI, pain intensity and QOL scores were 15.4±3.0/13.3±2.6, 8.0±1.7 and 5.7±0.9, respectively. Hunner lesions were mostly located at the dome, posterior and posterolateral walls. Accordingly, biopsies of nonlesion area were taken from anterolateral walls (table 2).

RNA-Seq

Total and sample-by-sample read counts are shown in supplementary table 2 (https://www.jurology.com).

Analysis of DEGs

Of 13,951 genes detected in all samples, 109 were differentially expressed between Hunner lesion and nonlesion areas. Of the 109 DEGs, 74 were up-regulated and 35 were down-regulated in Hunner lesions (fig. 1 and supplementary table 3, https://www.jurology.com).

GO and KEGG Enrichment Analysis

The results of GO and GO slim analyses for Hunner lesion-specific 109 DEGs are shown in supplementary tables 4–6 (https://www.jurology.com) and figure 2. GO slim analysis revealed that Hunner

<table>
<thead>
<tr>
<th>Location of Hunner Lesions</th>
<th>No. Biopsied Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neck</td>
<td>0</td>
</tr>
<tr>
<td>Trigone</td>
<td>0</td>
</tr>
<tr>
<td>Posterior</td>
<td>22</td>
</tr>
<tr>
<td>Dome</td>
<td>12</td>
</tr>
<tr>
<td>Lateral:</td>
<td></td>
</tr>
<tr>
<td>Posterolateral</td>
<td>17</td>
</tr>
<tr>
<td>Anterolateral</td>
<td>1</td>
</tr>
<tr>
<td>Anterior</td>
<td>3</td>
</tr>
</tbody>
</table>

* Counted twice when multiple lesions were present.
lesion-specific up-regulated DEGs were associated with the biological process terms “anatomical structure development” and “signal transduction,” the cellular component terms “plasma membrane” and “extracellular region,” and the molecular function terms “ion binding” and “structural molecular activity” (fig. 2, A). KEGG pathway analysis identified 24 pathways significantly up-regulated in Hunner lesions, including PI3K-Akt signaling, HIF1α signaling, EGFR tyrosine kinase inhibitor resistance, RAS signaling, PPAR signaling, calcium signaling, focal adhesion, neuroactive ligand–receptor interaction, ECM-receptor interaction and MAPK signaling. The KEGG analysis also identified 6 pathways down-regulated in Hunner lesions including basal cell carcinoma, protein digestion and absorption, and TNF signaling (table 3).

qPCR

A qPCR analysis revealed that the relative expressions of HIF1α, IFN-γ and IL-2 were significantly higher in Hunner lesions than in nonlesion areas (fig. 3).

Immunohistochemical Quantification

Digital immunohistochemical quantification revealed that lymphoplasmacytic (sum of CD3, CD20 and CD138-positive cells) and mast cell densities, CD4 and CD8-positive T-cell densities, the CD4/CD8 ratio and the epithelial/specimen ratio were comparable between the Hunner lesions and nonlesion areas (fig. 4). Extensive HIF1α immunoreactivity...
was detected in subepithelial mononuclear cells. Nuclear immunoreactivity of HIF1α was significantly higher in Hunner lesions than in nonlesion areas (fig. 5 and table 4).

DISCUSSION

In this study, using the updated NovaSeq sequencing system we found that HIF1α regulatory biological pathways, including PI3K–Akt signaling, Ras signaling, MAPK signaling and EGFR tyrosine kinase inhibitor resistance were significantly enriched in Hunner lesions. In addition, immunohistochemistry revealed that HIF1α protein was up-regulated in Hunner lesions relative to nonlesion areas. By contrast, the degree of epithelial denudation and chronic inflammation were almost equivalent between Hunner lesion and nonlesion areas.

In a previous study, we performed RNA-seq analysis showing that the HIF1α signaling pathway was significantly more active in HIC than in BPS and normal controls. The mean FPKM scores of HIF1α mRNA in that study were 35.6±13.8, 23.5±7.3, 9.5±6.0 and 10.4±2.7 in Hunner lesions, nonlesion areas of HIC, BPS and normal controls, respectively. However, because we did not identify a sufficient number of DEGs, we were unable to detect biological pathways that were significantly altered between Hunner lesion and nonlesion areas. In this present study, we identified a modest number of DEGs and discovered the significant up-regulation of HIF1α-related biological pathways in Hunner lesions. The overexpression of HIF1α protein in Hunner lesions, as demonstrated by immunohistochemistry, emphasizes the importance of HIF1α in the pathophysiology of HIC.

HIF1α is the oxygen-sensitive subunit of HIF1, a heterodimeric transcription factor that plays a pivotal role in the response to hypoxia/ischemia and inflammation. HIF1α is up-regulated in response to tissue hypoxia/ischemia or inflammatory cytokines such as IL-1β, TNFα or TGFβ via intracellular signaling pathways like EGFR/PI3K/Akt/mTOR signaling pathways and the NF-κB signaling pathway. HIF1α and ischemia have been implicated as potential etiologies of IC/BPS. HIF1α is expressed at higher levels in IC/BPS bladders than in normal control bladders. In addition, internal iliac arterial flow and resistive indices are significantly lower in IC/BPS patients than in normal healthy controls. Irwin et al used laser Doppler flowmetry to analyze bladder blood flow at the trigone and posterolateral walls during hydrodistension under a pressure of 80 cmH2O; they observed significantly impaired bladder blood flow amplification in IC bladders relative to control bladders. Another study using endoscopic laser Doppler flowmetry confirmed significantly impaired blood

Table 3. Significantly enriched biological pathways in Hunner lesions relative to nonlesion areas

<table>
<thead>
<tr>
<th>Pathway ID</th>
<th>KEGG Pathway Name (No. of genes)</th>
<th>No. of Enriched Genes</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hsa04151</td>
<td>PI3K–Akt signaling pathway (354)</td>
<td>9</td>
<td><0.01</td>
</tr>
<tr>
<td>hsa04510</td>
<td>Focal adhesion (199)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>hsa04080</td>
<td>Neuroactive ligand–receptor interaction (340)</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>hsa05165</td>
<td>ECM-receptor interaction (88)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>map009020</td>
<td>Pathways in cancer (526)</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>hsa041014</td>
<td>Ras signaling pathway (232)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>hsa04010</td>
<td>Complement + coagulation cascades (79)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa01521</td>
<td>EGFR tyrosine kinase inhibitor resistance (79)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa04012</td>
<td>ErbB signaling pathway (85)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa04010</td>
<td>MAPK signaling pathway (295)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>hsa04722</td>
<td>Neurotrophin signaling pathway (119)</td>
<td>3</td>
<td><0.05</td>
</tr>
<tr>
<td>hsa04926</td>
<td>Relaxin signaling pathway (129)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa04270</td>
<td>Vascular smooth muscle contraction (132)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa05144</td>
<td>Malaria (49)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hsa04514</td>
<td>Cell adhesion molecules (CAMs) (146)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa04072</td>
<td>Phospholipase D signaling pathway (148)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa05226</td>
<td>Gastric cancer (149)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa04066</td>
<td>HIF-1 signaling pathway (100)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>hsa04080</td>
<td>Cytokine-cytokine receptor interaction (294)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>hsa05216</td>
<td>Melanoma (72)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hsa03320</td>
<td>PPAR signaling pathway (76)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hsa05412</td>
<td>Arrhythmogenic rt ventricular cardiomyopathy (ARVC) (77)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hsa04020</td>
<td>Calcium signaling pathway (193)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>hsa05165</td>
<td>Human papillomavirus infection (330)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>hsa05217</td>
<td>Basal cell carcinoma (63)</td>
<td>2</td>
<td><0.01</td>
</tr>
<tr>
<td>hsa04974</td>
<td>Protein digestion + absorption (95)</td>
<td>2</td>
<td><0.05</td>
</tr>
<tr>
<td>hsa04668</td>
<td>TNF signaling pathway (112)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hsa04550</td>
<td>Signaling pathways regulating pluripotency of stem cells (140)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hsa04310</td>
<td>Wnt signaling pathway (160)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>hsa05202</td>
<td>Transcriptional misregulation in cancer (186)</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
perfusion at the trigone and posterior walls of IC bladders relative to control bladders. Notably, in both studies bladder perfusion was impaired more severely at the posterolateral or posterior walls than at the trigone wall. This observation coincides with the finding that Hunner lesions are observed most often at the posterolateral and posterior walls, and are rarely seen at the trigone or bladder neck.
HIF1α can also be up-regulated via infection-induced inflammation. Lipopolysaccharides, compounds derived from pathogenic microorganisms that are potentially related to IC/BPS etiologies, increase the levels of mRNA expression of HIF1α by activating NF-κB signaling pathway through Toll-like receptor 4. Epstein-Barr virus (EBV) infection, which is also implicated in IC/BPS pathophysiology, induces the up-regulation of HIF1α protein synthesis by activating the MAPK signaling pathway in lymphoid cells. Activation of HIF1α cascades leads to the up-regulation of VEGF (vascular endothelial growth factor), erythropoietin, iNOS (inducible nitric oxide synthase) and/or glucose transporters, which protect cells from lethal damage or apoptosis induced by ischemia or inflammation. Previous studies have reported overexpression of VEGF and iNOS in HIC bladders. Although we did not observe up-regulation of these genes in Hunner lesions in our current study, it is possible that they are also regulated by other biological events that occur downstream of HIF1α cascades.

Presumably, the initial events in developing HIC involve inflammation of unknown origins; this inflammation may be pronounced at anatomically ischemic areas, resulting in formation of Hunner lesions at the posterior and posterolateral walls. We found that the degree of epithelial denudation was comparable between Hunner lesions and nonlesion areas; however, there is a slight difference between the denudation manner of the two areas, i.e., not represented by the epithelium/specimen ratio. Specifically, full layers of epithelium are frequently denuded at Hunner lesions where the subepithelial layer is exposed to the bladder lumen, while a couple of basal layers remain attached at nonlesion areas, protecting the subepithelial layer against exposure to urine. The completely denudated epithelium at Hunner lesions is likely to provoke permeation of urinary contents into the subepithelial layer of the bladder, leading to a vicious inflammatory cycle and intractable symptoms. The elevated mRNA levels of IFN-γ and IL-2 at Hunner lesions may reflect the relative intensification of inflammatory reactions at these sites.

This study had some limitations. First, the number of analyzed samples was modest (25). Second, it is not clear whether up-regulation of HIF1α...
Immunohistochemical analysis of HIF1α. A, representative images of immunohistochemical analyses of Hunner lesion using anti-HIF1α antibody. Left: HIF1α is highly expressed in mononuclear cells in subepithelial layer (original magnification ×200). Right: enlarged image of rectangular box in left image (original magnification ×400). B, nonlesion area. Left: expression of HIF1α is rarely observed in infiltrating mononuclear cells (original magnification ×200). Right: enlarged image of rectangular box in left image (original magnification ×400). C, HIF1α intensity in HIC cases. HIF1α intensity in Hunner lesion and nonlesion areas was determined for each case.
reflects an etiological cause of Hunner lesion or a consequence of inflammatory or ischemic processes. Third, we did not validate the results of this study using independent resources. Further experiments are required to confirm the overexpression of HIF1α in Hunner lesions.

CONCLUSIONS

Our findings reveal significant overexpression of HIF1α and up-regulation of related biological pathways in Hunner lesions. These observations are consistent with a pathophysiologica role of ischemia, in conjunction with inflammation, in the formation of Hunner lesions and the development of HIC. Further studies of HIF1α overexpression should elucidate the underlying pathophysiology of HIC and improve management of IC/BPS.

ACKNOWLEDGMENTS

We thank Kei Sakuma for technical support in immunohistochemistry.

REFERENCES

EDITORIAL COMMENTS

In this study, Akiyama et al have demonstrated significant overexpression of hypoxia-induced factor 1α (HIF-1α) and up-regulation of related biological pathways in interstitial cystitis/bladder pain syndrome (IC/BPS) with Hunner’s lesion (HIC), indicating that ischemia in conjunction with inflammation plays an important role of pathophysiology of HIC. Increased expression of HIF-1α in the IC/BPS bladders have been reported and postulated to associate with glomerulations during hydrodistention in IC/BPS (reference 20 in article). The authors found that bladder tissues from HIC areas had several more up-regulated biological pathways than nonHIC areas, but similar expressions of inflammatory cytokines and histology. In an immunohistochemistry study we found diminished expression of proliferation proteins tumor protein 63 and mature urothelium marker CK20 in both HIC and grade 3 glomerulation nonHIC bladders, suggesting the urothelial dysfunction in IC/BPS might be in a state of persistent or chronic injury that related to the limited expression of cell proliferation proteins.1 Notably, we also found HIC patients had a higher proportion of diffused (86.7%) and focal (30.6%) bladder wall thickening compared to those with nonHIC in computerized tomography. Interestingly, some patients with nonHIC also exhibited focal (32.9%) and even diffused (2.6%) bladder wall thickening.2 Bladder Epstein-Barr virus (EBV) infection in T cells had been found to link to the pathogenesis of IC/BPS. EBV infection was present in 87.5% of HIC and 17.4% of nonHIC bladder specimens, and a total of 46.2% of bladders with IC/BPS (reference 22 in article). In chronic inflammation, poor oxygenation could activate survival signaling pathways, including HIF-α. Expression of HIF-1α induced EBV lytic-gene expression in cells harboring wild-type EBV have been reported.3 Put together, these findings point out that HIC could be an eruption of the bladder urothelium from the underlying diffused inflammation, and infection in the inflammatory environment might be the fundamental cause of IC/BPS.

Hann-Chorng Kuo1
1Department of Urology
Hualien Tzu Chi Hospital
Buddhist Tzu Chi University
Tzu Chi University
Hualien, Taiwan

REFERENCES

In this issue of The Journal of Urology®, Akiyama and coworkers demonstrate overexpression of hypoxia induced factor 1 alpha (HIF1α) as well as an up-regulation of its related biological pathways in Hunner lesions. Their own interpretation of their results was that ischemia and inflammation play pathophysiological roles in just this subtype of interstitial cystitis. The very same research team reported a couple of years ago that lymphoplasmocytic infiltration was significantly more severe in Hunner type interstitial cystitis specimens than in nonHunner type interstitial cystitis specimens. In that paper, the conclusion was that Hunner type interstitial cystitis and nonHunner type interstitial cystitis were different pathological entities, the latter being characterized by pancystitis, B-cell expansion and loss of epithelium. Since the pivotal paper by Fall and coworkers more than thirty years ago,4 it has become progressively more clear that the diverse forms of interstitial cystitis indeed represent entirely different pathological entities, though sharing similar symptomatology and frequently also the same long-lasting course. Reports on excessive production of intraluminal nitric oxide, an inflammation marker, in Hunner type interstitial cystitis lend further support to this notion.2 Nevertheless, there are in fact still considerable discrepancies in explanations on how to define interstitial cystitis and, ever more importantly, to discriminate between Hunner type interstitial cystitis (ESSIC Type 3C) and nonHunner type interstitial cystitis (reference 7 in article). These discrepancies certainly call for a solution, principally
due to that the correct subtyping of patients with bladder pain syndrome/interstitial cystitis is of paramount importance, allowing not only for the option to adequately compare scientific materials but also for selecting a rewarding remedy for the specific patient.

REFERENCES

REPLY BY AUTHORS

As commented by Dr. Peeker, Hunner type interstitial cystitis (HIC; ESSIC BPS Type 3C) is a distinct entity to be separated from other conditions under the umbrella of interstitial cystitis/bladder pain syndrome (IC/BPS). It is worth praise that Dr. Fall and coworkers had implied this notion more than thirty years ago (reference 9 in article). We have found the immune-mediated inflammation properties of HIC that is characterized by clonal expansion of infiltrating B cells and pancystitis (references 12 and 13 in article). The present study has added another biological feature of HIC, that is, local ischemia as demonstrated by overexpression of hypoxia induced factor 1 alpha and its related biological pathways. Such accumulated evidence enables us to revise the terminology of interstitial cystitis. The currently used term of “interstitial cystitis” might refer to the overall bladder pain syndrome complex as equivalent to IC/BPS, regardless of the presence or absence of histological inflammation in the bladder. This ambiguity should be resolved by designating the term “interstitial cystitis” to denote HIC alone, leaving other clinically mimicking noninflammatory conditions as BPS. Otherwise, the current HIC may be renamed, for example, as “Hunner disease,” so as to be discerned from other chronic cystitis that is not associated with Hunner lesions.